Chapter 2

Reciprocal Lattice
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DIFFRACTION OF WAVES BY CRYSTALS

Bragg Law

We study crystal structure through the diffraction of photons, neutrons,
and electrons (Fig. 1). The diffraction depends on the crystal structure and
on the wavelength.
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Bragg Law of Diffraction

» W. L. Bragg presented a simple explanation of the law of
diffraction beams from a crystal.

» The incident waves are reflected specularly (mirror-like) from
parallel planes of atoms in the crystals. In the specular reflection,
the angle of incidence is equal to the angle of reflection. &[] 57 &

» The diffracted beams are found when the reflections from parallel
planes of atoms interfere constructively.

» Elastic scattering is considered here that the energy of x-rays is not
changed upon reflection



Consider parallel lattice planes spaced d apart. The radiation is incident in
the plane of the paper. The path difference for rays reflected from adjacent
planes is 2d sin 6, where 6 is measured from the plane. Constructive interfer-

ence of the radiation from successive planes occurs when the path difference
is an integral number n of wavelengths A, so that

Bragg Equation

2d sin 8 = nA .

Figure 2 Derivation of the Bragg equation 2d sin # = nA; here d is the spacing of parallel atomic
planes and 27mn_is the difference in phase between reflections from successive planes. The
reflecting planes have nothing to do with the surface planes bounding the particular specimen.




Although the reflection from each plane is specular, for only certain values
of 6 will the reflections from all periodic parallel planes add up in phase to give
a strong reflected beam.

The Bragg law is a consequence of the periodicity of the lattice. Notice
that the law does not refer to the composition of the basis of atoms associated

with every lattice point. We shall see, however, that the composition of the
basis determines the relative intensity of the various orders of diffraction
(denoted by n above) from a given set of parallel planes.



A monochromator Set up

» 4000}
E . (220) reflection
: £ Main beam
}nmdent bei?lrlr: P £ 3000 peak intensity A=1164
PNy e 3 180,000 c.p.m.
or reactor 542000} P 2 (414(1))6 2
= =1
HER! 3 (220) reflection
| O 1000 A =0581K
- . .
0° 10° 20° 30° 40°
Bragg angle 6
. Sn Beam from monochromator
Monochromating \
crystal To crystal specimen
on rotating table
<—Undeviated
components of
main beam

Figure 3 Sketch of a monochromator which by Bragg reflection selects a narrow spectrum of
x-ray or neutron wavelengths from a broad spectrum incident beam. The upper part of the figure
shows the analysis (obtained by reflection from a second crystal) of the purity of a 1.16 A beam of
neutrons from a calcium fluoride crystal monochromator. (After G. Bacon.)




X-ray Powder diffraction pattern of Si
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Figure 4 X-ray diffractometer recording of powdered silicon, showing a counter recording of the
diffracted beams. (Courtesy of W. Parrish.)




SCATTERED WAVE AMPLITUDE

We need a deeper analysis to determine the scattering intensity
from the basis of atoms, which means from the spatial distribution of
electrons within each cell.

From (1, 3), a crystal is invariant under any translation of the form
T= uia1+ Usay + Usas, where uj, Uy, Uzare integers and ai, a, az are
the crystal axes. Any local physical property of the crystal is
Invariant under T, such as the charge concentration, electron
number density, or magnetic moment density.

Fourier Analysis
Electron number density n (r) is a periodic function of r,

n(r+T) =n(r) (2)

Such periodicity creates an ideal situation for Fourier analysis.

The most interesting properties of crystals are directly related to the Fourier
components of the electron density.




We consider first a function n(x) in one dimension with period a in the
direction x. We expand n(x) in a Fourier series of sines and cosines:

1-D n(x) =ny+ E C, cos (27px/a) + S, sin(2mpx/a)] (3)

p=>0

where the p are positive integers and C,, S, are real constants, called the

p>
Fourier coefficients of the expansion. The factor@ in the arguments en-

sures that n(x) has the period a:

n(x +a) =ny+ E[C, cos(2mpx/a + 2mp) + S, sin(2mpx/a + 2mp)]

(4)
=ny+ 2 C, cos(2mpx/a) + S, sin(2mpx/a)] = n(x) .

We say that 2ap/a is a point in the reciprocal lattice or Fourier space of the

crystal. In one dimension these points lie on a line. The reciprocal lattice
points tell us the allowed terms in the Fourier series (4) or (5). A term is al-
lowed if it is consistent with the periodicity of the crystal, as in Fig. 5.
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Figure 5 A periodic function n(x) of period a, and the terms 2mp/a that

may appear in the Fourier transform n(x) = 2 n, exp(i2mpx/a). The mag-

nitudes of the individual terms n, are not plotted.



It is convenient to write the series (4) in the compact form

1-D n(x) =2, n, exp(i2mpx/a) , (5)

where the sum is over all integers p: positive, negative, and zero. The coeffi-

cients n, now are complex numbers. To ensure that n(x) is a real function, we

require — *
1 ‘ N =My n-p — np (6)

for then the sum of the terms in

and —p is real. The asterisk on n*, denotes

the complex conjugate of n
With ¢ = 2mpa/a, th
satisfied. The sum is

-1

um of th€ terms in p and —p in (5) is real if (6) is

n,(cos ¢ +7 sin @) + n_,(cos ¢ — i sin @)

=(n,+n_,)cos ¢+in,— n_,)sin @ , (7)
which in turn is equal to the real fyattion
2Re{n,,} Cos @ — 2Im{n,,} sin @ (8)

if (6) is satisfied. Here Re{n,} and Im{n,} are real and denote the real
and imaginary parts of n,. Thus the number density n(x) is a real function, as
desired.




The extension of the Fourier analysis to periodic functions n(r) in three
dimensions is straightforward. We must find a set of vectors G such that

3-D n(r)=%: ng exp(iG - r) (9)

is invariant under all crystal translations T that leave the crystal invariant. It

will be shown below that the set of Fourier coefficients ng determines the
x-ray scattering amplitude.

Inversion of Fourier Series. We now show that the Fourier coefficient n,
in the series (5) is given by

1-D n, = a f dx n(x) exp(—i2mpx/a) . (10)
g
Substitute (5) in (10) to obtain is substituted by Eq. (5)

n, =g~ 2 N,y fo dx expli2m(p’ — p)x/a] . (11)
p



If p” # p the value of the integral is

a (ei:?.'n'(p'—p) _1) = ,

i2m(p’ — p)

because p’ — p is an integer and exp[i2m(integer)] = 1. For the term p’ = p the

integrand is exp(i0) = 1, and the value of the integral is a, so that n, = a ‘na =

p
n,, which is an identity, so that (10) is an identity.

Similarly, the inversion of (9) gives

3-D nG=Vc_1J l]an(r) exp(—iG *r) . (12)

Here V, is the volume of a cell of the crystal.



